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We present a three-dimensional numerical model for the shallow water equations,
suitable for determining the wind driven currents in homogeneous and stratified
lakes. The model is based on the semispectral primitive equation model (SPEM)
originally developed by Haidvogelt al; however, because of the relatively small
water depths of inland lakes in comparison to the ocean, the explicit integration
technique, employed in SPEM, requires excessively small time steps which lead to
very long integration times. In this paper a semi-implicit temporal integration scheme
is proposed with the aid of which time integrations through realistic time spans for
inland lakes become economical. By means of a large number of test runs in which
the time step, the mesh size, and the austausch coefficients are changed and the
numerical stability and the convergence performances of the code are determined.
Moreover, the new semi-implicit SPEM is tested as to whether it is now capable
to predict or reproduce physically relevant processes that are commonly observed
by physical limnologists. To this end, computational results for a homogeneous and
stratified rectangle and Lake Constance are presenigehos Academic Press

1. INTRODUCTION

Usual numerical techniques for the integration of the shallow water equations in t
Boussinesq approximation make use of finite difference (FD) and finite element (FE) di
cretizations for the velocity, temperature, and tracer concentration fields. The vertical «
rection is generally distinct from the horizontal directions; i.e., the lake or ocean regic
is partitioned into horizontal layers with exchange processes accordingly accounted
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between the layers; and in the horizontal directions FD- or FE-approximations are ust
This a priori distinction of the vertical direction is physically motivated and lies in the
geometry, aspect ratios, and natural stratification thus established by the solar radiat
However, such a layer construction leads to a piecewise constant approximation of the fi
variables with depth and necessarily requires a large number of layers and the selectio
very thin layers in the metalimnion (generally smaller than 1 m). Methods which use in tf
vertical a spectral functional expansion of the field variables, but which may still emplo
FD- or FE-approximations in the horizontal are advantageous because of their enhan
smoothness properties.

The semispectral primitive equation model (SPEM) of Haidvogel, Wilkin and Young [23
uses Chebyshev polynomials in the vertical and FD-discretizations with central differenc
of astaggered Arakawa grid in the horizontal directions. Apart from the uniform resolutioni
the vertical, the spectral methods generally enjoy faster convergence and smaller numel
diffusion than the FD methods. Furthermore, the “order of the approximate model” (i.e., i
number of functions employed in the spectral representation) is constant in shallow regio
since the number of approximating functions remains the same. Since SPEM employs
o -transformation prior to the implementation of the discretization, the water depthinthe e
tire lake is mapped onto the intervall, 1], implying that the locations of the discretization
points are optimally chosen for each water depth.

Classical FD approximations of the shallow water equations use a Cartesian mest
physical space and thus lead close to the shore inavoidably to relatively poor approximati
of the field variables. In SPEM this disadvantage is removed by mapping via series
Schwarz—Chrystoffel transformations a polygonal representation of the closed shorell
onto a rectangle in the computationg] §)-plane. A coordinate net in this plane represents
in the horizontal plane of the physical space a curvilinear orthogonal net of irregular me
sizes. A closed polygonal shore line can always be mapped onto a rectangle; practice
however, extremely fine resolutions might be necessary to this end. In such cases a n
homogeneous distribution of mesh sizes is achieved by declaring certain regions to I
points. We shall encounter such a chase when considering Lake Constance.

In oceanographic applications SPEM has proved to be very reliable and very succe
ful; e.g. [4, 6-8, 12, 13, 22, 23, 25, 30-32, 54, 69, 71]. An important disadvantage
SPEM, which does not show in oceanographical problems or is at most of periphel
significance but crucial in limnological applications, is the explicit discretization of the
time-derivatives of the field variables with all consequences of the size of the time st
At. Because explicit schemes are only conditionally stable, this explicit time step mu
be restricted by the minimal spatial mesh size. When 3D FD-approximations are us
this is the smallest layer thicknegsz, which in the thermocline depth of lakes may
only be one or a few meters, thus necessitating extremely small time steps, if nume
cal instabilities are to be avoided. In SPEM, the analogue of the layer thickness is t
number of spectral functiondy, called theorder of the model. It follows that it is im-
possible to integrate over limnologically relevant times, i.e., approximately 1 month. F¢
Lake Constance, for instance, with a resolutiorflofx M) x N = (65 x 17) x 12 mesh
points and Chebyshev polynomials the maximal time step guaranteeing stable integrat
is At = 1.5 s. This dilemma points at the purpose of this paper: To introduce a semi-implic
scheme for the integration in time to enhance numerical stability and reduce compu
tional expenditures for integration over limnologically relevent times (i.e., approximatel
1 month).
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In Section 2 we outline the model in the Boussinesq-approximated shallow water equ
tions, briefly explain the original SPEM integration technique and point at its peculiaritie
when explicit procedures in the temporal integration are used. We turn in Section 3 tc
method of semi-implicit integration in time, in which the horizontal directions are consis
tently treated as explicit while the vertical direction is treated implicitly. The method yield:
a considerably more stable scheme than the fully explicit one.

Once this is recognized, we analyse in Section 4 the numerical properties of the sel
implicit scheme in comparison with the original explicit temporal integration. To delimit its
stability range, we vary the austausch coefficients, time-steps, spatial mesh sizes, and o
of the spectral expansion, and we tabulate its performance properties. In Section 5 the c
vergence properties are analyzed. In Section 6 we finally illustrate the model performar
by demonstrating results obtained from a realistic barotropic and baroclinic circulatic
problem, respectively.

2. THE MODEL

2.1. Field Equations

The governing equations describing the thermodynamics of lake circulation process
driven by wind and solar radiation are the balance laws of mass, momentum, and e
ergy complemented by a thermal equation of state and turbulent closure conditions for
Reynolds stresses and the heat flux, in which diffusivities of momentum and heat are tal
to account for the anisotropy effects of the turbulent intensity; different values apply i
the horizontal and vertical directions. When imposing the Boussinesq assumption and
shallow-water assumption through an appropriate scaling, the field equations reduce to
following simplified equation set:

8u+3v+8w_0

ax dy 9z
8u+v radu — f 8¢+ d au " d au " d au
— . —fv=—-—"4+—(vh— — | vH— —vw— ),
at g ax ax \ "ax) Tay \UMay) Taz\Vaz

8v+v radv + fu 8¢+ d dv n d ov n d ov
— . v =——+—|vu— — | vH— —|w— ),
at . oy “ax \ "ox) Tay \May) Taz\Vaz) ()

o— 0% _r9
9z po
p=p(T),

oT d oT 9 oT 3 oT
— +v.gradT = — (D, — )+ — (D] — | + — ( Dy —
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of balance of mass, now requiring the solenoidicity of the velocity field, momentum, in whic
the vertical balance reduces to the hydrostatic pressure balance, the equation of state, an
energy balance for the temperature evolution. In Eqsv&)u, v, w); f, p, po, ¢, T are,
respectively, the velocity vector, Coriolis parameter, density, reference density, dynan
pressure¢ = p/po, p is pressure), temperature. Furthermarg, vy are horizontal and
vertical momentump?,, D\T, are horizontal and vertical heat diffusivities.
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As for boundary conditions, the rigid lid assumption is applied at the free surface ar
the flow is tangential to the bed. Furthermore, it will be assumed that no heat flows acrc
the free or basal surfaces and that wind is transmitted through the free surface by presc
ing the surface shear tractions. Similarly, basal shear tractions obey a viscous sliding I:
Applying the “rigid lid assumption” at the free surface eliminates from the solution higt
speed surface-gravity waves. Thus the influence of the motion of the free surface is igno
in the vertically integrated mass balance. This amounts to assuming the volume transj
is solenoidal and to making it derivable from a streamfunction that can be determin
independently of the baroclinic response.

2.2. A Brief Description of the Original SPEM

SPEM employes a curvilinear coordinate system that follows both a polygonal shore li
and the bottom topography. Variable bottom topography is implemented by the followir
so-calleds -transformation

X, ¥,2)— X=X, y=y, o=14+2——, 2)

whereh(x, y) describes the bathymetry, varies from—1 at the bottomz= — h(x, y)

to +1 at the (underformed) free surfagze= 0. This transformation allows the expansion
of all field variables into an orthogonal function set (here the Chebyshev polynomials).
addition, by using the Schwarz—Chrystoffel transformation the interior of the polygon:
horizontal lake domain is mapped onto a rectangle inghe)(domain

®)

x:f((g,n)} {szé(x, y),
. = .
y=9E, n) n=nx,y).

In this orthogonal curvilinear coordinate system the vectorial arc length incresseat
given by

_ EA dn

where&;, &, are unit vectors pointing into thie- andn-directions, respectivelyn?, n? are
the diagonal elements of the contravariant metric tensor belonging to (3).

After implementing the transformations (2) and (3) the lake volume domain is mappe
onto a cube. In the coordinatésn, o the governing differential equations (1) take the

forms
9 [ hu 9 [ hu? 3 [huv 3 [ huQ
at( )%( )*a—(—)w(m)
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. d¢ ghp
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in which, u, v are the horizontal physical components in gheand n-directions of the
velocity field. Then

QE.n,0)= % {(1— o)mug +@1- o)nv% + Zw} (11)

is the vertical component of the velocity field in ihéransformed coordinates. Furthermore,
the frictional and the diffusive termsg,, F,, Dt are given by

bl mhau d nhdu a ([ 4dvy du
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respectively (see [23]). In these equations the kinemajicyy, and the thermaD],, D,
diffusivities are to be treated as functions of space (and time).

In SPEM all field variables, in which the vertically integrated flow has been eliminatec
are expanded as

N
b n,0,) =" Pu(o)bk(&, 1. 1), (15)

k=0

in which Py (o) are modified Chebyshev polynomials, and the summation ihtldgnotes
the order of the expansion, the number of “modes” by which the fundtiény, o, t) is
approximated. In SPEM it is not the coefficient functi(ﬁnss, n, t) that are determined,
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but the field variable itself,
N ~
b= Ponb, n=0,12....N, (16)
k=0

in which the number of selected collocation points is larger by one than the Nrdéthe
expansion (15). In vector—matrix notation Eq. (16) takes the form

b=Fb or b=F!b. (17)
F~1 exists if the locations, are properly selected. If, moreover,

_ 9Pk(on)
T 9o

1
R . Su= [ Ao (18)
then differentiation and integration with respeattoan be performed with the polynomials;
ie.,

ab
— £ §,b=RF1b:= Cpzb, (19)
do

1 1 1 T
(/ bdo,/ bda,...,/ bdo) Z 1o =Sb=SF'b:=Cprh. (20)
-1 o1 ON

Cpz andCyt are matrices which are known, once the polynomials have been selected.
Finite differentiations in the horizontal are represented according to an Arakawa C-me:t
thus,

ab bi+1/2,j — bifl/g,j aob bi,j+1/2 - bi,jfl/2

& Ag ’ n AT]

T o (21)

If averages over the spatial incrementsandAn are denoted b@é and()", respectively,
then
_ by +biye) —— _ bijretbijoae

by = 2 > b 2

The indices, j denote the numberings in the horizontal. In the following we will use these
notations. The discretized versions of Egs. (5)—(10) are given in [23].
3. IMPLICIT INTEGRATION IN TIME
Most field equations derived above possess the form

dD(t)
o =F@.. (22)

In a leap frog procedure it takes the form

Ot + At) = B (t — At) + 2ALF () (23)
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and can explicitly be solved fod(t + At) if the fields at all nodal points, j, k are
known at timeg — At andt. Because such explicit integrations are conditionally stable
the spatial mesh size dictates the time stdpfor stable integration. The smallest layer
thicknessAz is the limiting discretization step; in SPEM it corresponds to the ohderf

the spectral expansion. As already mentioned, this severely delimits the time spans o
which the equations can be integrated. They are usually smaller than physically relev:
time spans. For Lake Constance the needed maximtiim 1.5 s, if the spatial resolution
is(LxM)x N=(65x17) x 12.

This situation requires that implicit, i.e., unconditionally stable schemes or semi-implici
i.e., improved conditionally stable schemes be employed. For multidimensional systel
ADI-schemes are a possible avenue for the latter case [68]. Test computations showed
for typical lake circulation problems, i.e., distinct shallowness of the basins the stabili
performance of a numerical scheme that only uses implicit temporal integration in tt
o-direction is even better than the ADI-method. This means that the instability of th
explicit scheme is primarily to the vertical direction, since the smallest nodal point distanc
in the vertical is very much smaller than a corresponding minimal distance between tv
nodal points in the horizontal. Furthermore, the computational expenditures for the AD
method are much larger than for an implicit temporal integration only in the vertical directio
[68]. For this reason computations presented below will be performed with an implicit tim
integration only in the vertical direction.

For the time stept" — t"*1), implicit in the o-direction, but explicit in thet- and
n-directions, the equations read:

momentum equation in &-direction
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momentum equation in n-direction
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3
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temperature equation
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nt hmn

This discretization is chosen such that at the new time level only linear equations emerge :
that pressure terms remain explicit. This avoids coupling of equations which are uncoupl
in their differential form; see [68].

Because a spectral expansion is used in the vertical direction, the vertical derivatives
not expressed in terms of finite differences and the system of equations governing is
tridiagonal as in semi-implicit schemes of finite differences. This is clear from (19); th
derivative of a field variable with respect ¢ois exclusively expressed by a mat®Bp 2
which only depends on the properties of the Chebyshev polynomials that premultiplies t
vector of field quantities evaluated at the vertical nodal points. For instance, the vertic
advective acceleration in (24) reads

n+1 n+l §
I]OQIjO IJOQI]O
— untlgn — untl on ¢
hg IJ].QInjl hE c |JlQ|n]1 27
mnee | | Twez| | @D
n+l S n+l
|]NQ|1N IJNQI]N

If second-order differentiations with respectdoare involved, the boundary conditions
at the free surface and the base must be incorporated after the performance of the
differentiation, and the second differentiation should be performed afterwards.

As an example, consider the vertical austausch term in the momentum equation in-
&-direction, Eq. (24). In afirst step, the matfy 2 is subdivided into the block matrices

Cbza
Cpz = (Cpza; Cpzb, Cpze) = | Cozs |, (28)
Cbz,

in which Cpz, Cpza, Cbzb, Cpze, Coze, Cozg, a@nd Cpz, represent, respectively,
(N+1)x(N+1), (N+1)x1, (N+D)x(N=-21), (N+1)x1, Ix(N+1), (N=1)x (N+1),
and Ix (N +1) matrices which all are known. Fbe= const,j = const, the vertical derivative
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at all vertical nodal lines are represented as

4oyt

n+1 _ C n+1
U = =——CpzU]]
(29)
nt1 ZVV"O CozoU't!
475 CDZauH 2
_ W C 1l | = % 2 Coz Un+l
T e | CPPYNT | T mEne Dl ’
, C pzyU
1 1 1 1
whereun+ —(U.nTo, U.nTl PTN)T

Next, the dynamical boundary conditions at the free surface and at the bottom are inc
porated as

1 h
Teij
At e 2 :: N1 (30)
ﬁémgﬁg LT mERE DzgYj | K
1.0
POTELJ

in which Tsoi, i ré'} j are the shear stresses in theirection at the free surface (wind stress)
and at the base (bottom friction). The second derivative with respegtdan now be
performed as before, yielding

1.h
4_5 5 £0 5' j
Vv n+l\ _ 2vy n+l
o (i 1) = o | 3 Comt
1.0
po L]
2 h 4 £ n+1
= ——CozaT; j + — - Cozp(W"Cozp)u; | (31)
POl poht e
2
0
+ pomsﬁs CDZCtg‘i,j .

Here, the expressiawéchﬂ denotes successively,

o the first line ofCp 4 timeswy; | ;,
o the second line o€pz; timesiv; | ,,

o the((N — 1)-s line of Cpzs timesiv; | y_s.

sincevy® is, in general, a function af. The second term on the right-hand side of (31)
contains the unknown varlablnfferl at the new time level is now moved to the left-hand
side of the equation; the first and the third term remain for all times on the right-hand si
because they are prescribed through the boundary conditions. In this way the followi
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TABLE 1
Comparison of the Maximal Time-Step Sizes Necessary for Stable Inte-
grations of Lake Constance Circulations when Explicit and Semi-Implicit
(in the o-Direction) Temporal Discretizations Are Used

Homogeneous water Stratified water
N (number of polynomials) 6 12 6 12
At [s] explicit 7.2 15 7.2 15
At [s] o-implicit 1440 1440 144 144

system of linear equations is obtained

n+1
ijo

n (Dlrt-}—':li n
AV | =B (32)

i

]y
whereA'; is a fully occupied N + 1) x (N + 1) matrix andBy; is a(N + 1) x 1 matrix,
known on the old time leval. With such a system, for each () the field variables, v
(of the momentum balance in tje andn-directions) and temperatuilecan be separately
determined by using (24), (25), and (26).

Test computations have shown that the largest time steps that are tolerated in order
the “o-implicit” scheme can stably be integrated is larger than in the explicit method: (i) ir
wind induced computations of Lake Constance by a factor between 200! 08) and
800 (for N = 12) if the lake water is homogeneous and (ii) between 20Nfer 6) and 80
(for N=12) if it is stratified. The results depend somewhat on the number of Chebysh
polynomials that are used (see Table 1). However, the computational times can be redu
respectively, approximately by a factor of 60 for homogeneous water and 6 for stratifi
water in comparison with the explicit scheme, since the computational time for a tinr
step with thes -implicit scheme is larger than that with the explicit scheme. This factor
of computational time reduction is only slightly dependent on the number of Chebysh
polynomials that is used.

Results obtained with the explicit and semi-implicit schemes and compared showed
excellent agreement. This corroborated that the two discretizations are equivalent to e
other.

4. STABILITY PERFORMANCE

In this section the stability of the proposed numerical schemes is studied for both t
semi-implicit in theo -direction and explicit time integration for Lake Constance, an Alpine
lake bordening Germany, Austria, and Switzerland. It consists of three basins: Obers
Uberlinger See, and Untersee, but the Untersee is separated from the other two ba
by the 5-km long channel “Seerhein”; we shall here be concerned with the ensemt
Obersea-Uberlinger See, for brevity also referred to as Lake Constance. It is approximate
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FIG. 1. (a) Map of Lake Constance. Unterséerlinger See, and Obersee. Also shown are the 50 m and
200 m isobaths and a few main towns along the shore. (b) Distribution of horizontal curvilinear coordinate n
with computational shoreline (heavy solid line) with resolutiosx M =65 x 17.

64 kmlong and 16 km wide, has a maximum depth of 250 m and an approximate mean de
of 100 m (Fig. 1a). ThéJberlinger See is a relatively deep and narrow arm, “separated
from the main upper lake by a sill just west of the island Mainau. The depth discretizatic
we use in this paper is based on the bathymetric map of the 1990 survey [43]. The smalll
depth in the computations is assumed to be 10 m. The discretization is shown in Fig.

with grid pointsL x M =65 x 17, while in the vertical direction six or more polynomials

are used. A large number of test runs, in which the austausch terms, the time step, and
mesh size were varied, was performed to scrutinize the stability performance of the cod

4.1. Homogeneous Water

For simple wave-like problems with explicit schemes, instability, occurs in general, whe
the Courant—Friedrichs—Levy (CFL) criterion,

Vinax < AS/(v/2At), (33)

is violated; hereAs denotes the smallest mesh si2d, is the time step, ania« is the
maximal phase speed of the wave. Wils =500 m, At =86.4 s (1 day=1000 time
steps) this velocity is 4.1 m™$. It is much smaller than the barotropic shallow water
speed; since the rigid-lid assumption eliminates surface gravity waves, the equations o
incorporate the topographically induced barotropic motions whose velocities are sme
The CFL condition therefore does not need to conform with the high speed barotror
Kelvin and Poincae 'waves which would otherwise severely constrain the time step of th
explicit scheme. When diffusion is included, the stability issue becomes more complicate
If, owing to small friction, large gradients in the field variables can build up or numerica
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noise be formed, then the computations often lead to violations of the CFL condition at
instabilities form. A balance of horizontal diffusive terms and inertial terms leads, throug
a dimensional argument to tllamping(viscou$ time scale

[Tu] = (AX)?/(m%vh) (34)

(the factorz? in the denominator is not important, other estimates replace it by 2) for th
shortest waves that can be modelled by the equations. This time should be short enoug
damp out the numerical noise and long enough on the larger scales to retain the features
is interested in. For instance withy = 1.0 st and Ax = 500 m this yields Ty] ~ 1
day. In other words, with horizontal diffusivities ofan? s~ periods of processes of less
than approximately 1 day cannot be resolved. Should they be significant, then one m
work with a smaller horizontal mesh size. An analogous argument works equally in tf
vertical direction with Ty] = (A2)?/ (7 %vy).

To explore the stability range of the explicit code, computations were performed by usir
aconstant uniformwind in the long direction with wind stre$s= 0.05N m=2 (~ 4.7 ms*
windspeed), a resolution &f x M x N =65x 17 x 6 mesh points, atime stept =7.2 s,
horizontal diffusivity vy = 1.0 n?s~! and constant vertical diffusivities, as shown in
Table 2. It displays the number of time steps through which computations could pri
ceed and at which the numerical break down occurred. Evidently, the duration of st
ble integration increases with increasing until stable computations are possible for
vy € [0.02,0.05] n? s~1; for even larger values of, the time step is then too large to resolve
the vertical diffusion. Fopy = 0.1 n? s~ the vertical diffusive time scal@[] = AZ?/(%vy)
is approximately 4 s, ihz=2 m, a value approximately corresponding to the smallest ver:
tical nodal point distance. Processes on this time scale, however, are no longer prope
resolved by our time stept =7.2 s. If, on the other hand, the time step is decreasec
to At=3 s (28800 steps per day!) the code delivers physically acceptable results w
v =0.1 mfs L.

Generally, the diffusivities should not and cannot be chosen independently of the chol
of the time step. According to experience and owing to measured values (see [37, -
for a summary, [51, 48]) values of, =0.1n?s™! are too large; this is why we chose
vy =0.02n? s~! for homogeneous water, which also satisfies the stability requirement:
In [65] we shall go more deeply into this question and choose valueg tifat vary with
depth but remain of the order@® n? s,

What is the influence of the horizontal diffusivitieg? Table 3 collects the time steps of
breakdown for the explicit code, whes e [0.05, 500] n? st while vy =0.02n?sis

TABLE 2
Breakdown Times (Number of Time Steps) of Stable Computation for Lake Con-
stance for Different Vertical Austausch Coefficientsvy at Fixed vy = 1.0 m? s~ for
the Explicit Code with a Time StepAt=7.2s

vy [m? s 0.005 0.01 0.02-0.05 0.07 0.1

Number of time steps for 19500 32000 Stable 40 30
stable computations
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TABLE 3
Breakdown Times (Number of Time Steps) of Stable Computation for Lake
Constance for Different Horizontal Austausch Coefficientasy € [0.05, 500] nf s*
at Fixed v, = 0.02 n? s~ for the Explicit Code with a Time Step At=7.2s

vy [m?s™] 0.05 0.1 0.5-200.0 300.0 500.0

Number of time steps for 19860 24030 Stable 70 30
stable computations

kept constantAt = 7.2 s, andr® =0.05N m~2. Evidently, forvy €[0.5, 200] n? s71, the
performance of the explicit code is stable. However, it should also be possible to perfor
stable computations with even larger horizontal friction coefficients; this is indeed the cax
for instance, forvy =500n? st if At =3s. Realistically, oceanographers and physical
limnologists recommendy =1 m?s™* (see [15]), but observations point also at smaller
values [41].

These explicit code analyses thus indicate that numerical instabilities always arise if t
diffusivities vy and/orvy are not sufficiently large to avoid or attenuate numerical noise.
Numerical instabilities can also arise with (very) large values of the austausch coefficien
if the time steps are too large to resolve he (vertical) diffusion; however, if the time stey
are sufficiently small, stability can always be reached with large diffusivities. Should th
smallest values of the diffusivitiagy, vy necessary to achieve stable integration be larger
than physically tolerable, then the horizontal and/or vertical mesh sizes can be reduced
the number of Chebyshev polynomials increased to stabilize the computation at reduc
values of the diffusivities. For instance, if one chootes M =129 x 33 in the hori-
zontal,vy =0.1n?s !t and At =1.5 s, one obtains stable performance of the code in ou
example.

Interesting in this context is also the fact that with variable mesh size (in the curviline
orthogonal coordinate system) a variable horizontal austausch coefficient that is adjus
to the local grid size may lead to better results than a constant coefficient. The adjustm
must be such that the austausch coefficignis the larger, the larger the local mesh size is.

Tables 2 and 3 also show that the explicit model for Lake Constance withl&5mesh
points and six Chebyshev polynomials is computationally stable if the austausch coefficie
arechosenagy =1.0 s, vy = 0.02 n? s 1, andAt = 7.2 s; from a limnological point
of view this time step is too small, yet a substantial increase is not possible because w
At =10s the code performs unstably. It can also be, and has been, verified that sta
numerical integration with\t = 7.2's is also possible, ify is as large as 200%s 1, but
not if vy is only slightly enlarged over its “stable” valueO2 n? s~* (since such a change
would have to go along with a reduction at). This means that the restriction of the time
step for this explicit code primarily stems from the diffusion in the vertical direction; in
other words, the time step is restricted by the larger vertical austausch coefficient and
smallest distance of the vertical nodal points.

As already mentioned in Section 2 the vertically integrated flow and the baroclinic cil
culation (whose vertically integrated flow vanishes) are solved separately. The advantag
that one does not need to explicitly compute the pressure gradient at the free surface wt
is unknown due to the rigid-lid assumption. Test runs have also shown that with the expli



222 WANG AND HUTTER

TABLE 4
Breakdown Times (Number of Time Steps) of Stable Computation for Lake Con-
stance for Different Vertical Austausch Coefficientszy, € [0.005, 10000] s~ at
Fixed vy = 1.0 m? s~ for the * o-Implicit” Code with a Time Step At=24 min

vy [m?s7] 0.005 0.01 0.02-2000.0 5000.0 10000.0

Number of time steps for 50 160 Stable 140 50
stable computations

code much larger time steps can be used for the vertically integrated barotropic circulati
processes than for the baroclinic one if one employs two different time steps for the tv
flow components. Likely reasons for the property are: first, the limitation of the time step |
the explicit scheme comes from the vertical direction; however, the barotropic compone
to the currents does not depend on the vertical direction. Second, and despite the fact the
explicit temporal integration is used for both the barotropic and baroclinic components, t
barotropic current must, in the entire domain, at the new time step be computed by a coug
procedure; i.e., it should also incorporate the fields that are unknown at the new time lev
which improves the stability of the integration scheme. For this reason, the implicit scher
for the barotropic current component should be avoided, which is indeed the case in ¢
code where thed'-implicit” time integration is only employed for the baroclinic component
of the total motion.

Tables 4 and 5 collect the number of time steps for the break down obtheplicit”
code when several different horizontal and vertical austausch coefficients are selected in
intervalsvy € [0.005 10000] n¥s~* and vy €[0.05, 5.0] m?s™1, respectively; the time
step wasAt =24 min and is 200 times large than for the explicit scheme. The qualitativ
behaviour is very similar to the previous, explicit case. For very small, and again for ve
large,vy-values the &-implicit” scheme is not stable. While the numerical instabilities at
very large values ofy > 5000 nf s~! are unphysical, those ay < 0.01 n?s™* are more
bothersome because these values are within the physically acceptable range. Unfortung
for variablevy, the range oy -values of stable performance of the code is rather narrow
(vy € [0.5, 1.0]m? s~ for vy = 0.02n? s71). Remedy requires increase of the horizon-
tal spatial resolution and/or reduction of the time step. It implies also that the time-ste
size is only restricted by the horizontal direction, because implicit integration is alreac
applied in the vertical direction. Incidentally, stable integration would also be possible wit

TABLE 5
Breakdown Times (Number of Time Steps) of Stable Computation for Lake
Constance for Different Horizontal Austausch Coefficientasy; € [0.05, 50] n? s™!
at Fixed vy =0.02 n? s~2 for the “ o-Implicit” Code with a Time Step At=24 min

vy [m2s™] 0.05 0.1 0.5-1.0 2.0 5.0

Number of time steps for 110 130 Stable 40 20
stable computations
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vy =0.5nm? s7%, vy = 0.02n? s7%, and a time steprt = 48 min; however, in order to limit
the discretization errors such a procedure is not recommended.
We summarize our findings as follows:

e At fixed spatial resolution the austausch temmpsandvy must be sufficiently large to
guarantee that numerical oscillations (noise) are attenuated, and computations can st
be executed. Tables 2 and 3 list conditions for the explicit code, Tables 4 and 5 those
the implicit code.

e Time steps are restricted by the austausch terms and the spatial resolution; for
o-implicit temporal integration this dependence is chiefly dictated by the horizontal diffu
sion coefficient and the horizontal spatial resolution. Computations that are not stable
very large values of the diffusivities at a given time step can be stabilized by a reduction
the time step (see Tables 2 and 3).

e For givenvy, vy stable performance of the explicit or semi-implicit codes can, in
principle, always be achieved by reducing the mesh size or increasing the number of mo
points. Withvy =0.005n? s~ andN = 18 Chebyshev polynomials insteadf= 6 (see
Tables 2 and 4) the explicit code performs stably provided the time step is also reduced fr
At=7.2stoAt =0.5s (172,800 steps per days!), while themplicit code computation
is stable with the same time stéy = 24 min as that witiN = 6.

4.2. Stratified Water

The qualitative behaviour of the stability performance in stratified water is very sim
ilar to the previous, homogeneous case. However, in the stratified case some additic
difficulties arise which are traceable to the temperature profile as a cause. Test com
tations for wind-induced currents have shown that the relatively coarse resolution in t
vertical direction and the relatively small vertical diffusivitieg at the metalimnion depth
are prone to numerical instabilities. The numerical oscillations (noise) have no physic
bearing, are due to the FD-approximation and essentially inavoidable, but can be delimi
by the mesh size and the number of Chebyshev polynomials in the spectral expansion
the horizontal direction, the numerical diffusion and, thus, the spurious oscillations col
stitute no difficulties for the performance of the code, because the horizontal temperat
gradients and current changes are generally small. In the transition layer from the epi-
the hypolimnion the vertical temperature gradients and the gradients of the baroclinic c
rents are, however, large; in addition, the physical, vertical diffusivitieare small and,
correspondingly, the spurious oscillations in the computed variables, large. For reason:s
numerical stabilityvy should, in the metalimnion, be large at the relatively coarse mesil
size we chose, certainly larger than is physically justified. With a refined vertical resolutic
a reduction of the artificial numerical diffusion, which is overshadowed by the physical dif
fusion, should be achieveable. Such a goal can only be reached by increasing the neces
CPU-times.

In SPEM the nodal points;, are positioned at the extrema of the Chebyshev polynomials
of orderN. Thus, the vertical nodal-point distances are not uniform, but smaller close t
the bottom and close to the free surface, with fairly coarse resolution in the middle, when
also in the metalimnion. For instance, for a 100-m deep lake Nita12 the nodal point
distances are the largest between 15 m and 50 m depth, where the metalimnion is situa
This explains, at least heuristically, why the code did not achieve numerical stability whe
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the austausch coefficients assumed the relatively large values

vy = 1.0 mZS_l, vy = 0.02 rﬂZS_l,

D], =10nm?s!, DJ =0.0005nts?, (35)
and the initial temperature profile i€ was given by
A J17-2exp—(z+10)/5), z=-20m
Te=0= {5+ 10ex(z+10)/20), z<—20m (36)

which is realistic for summer stratification and whose maximal vertical gradient arises b
tween 10 and 30 m. Evidently, between the epi- and hypolimnion the vertical diffusivitie
should, for numerical stability be larger, which, however, would physically not be meaning
ful. Test runs have also shown that numerical stability can be reached with the vertical diff
sivities (35), if the initial vertical temperature profile is changed such that the largest vertic
gradient does no longer arise between 10 m and 30 m but at the free surface. This is
case, e.g., for the initial temperature profile

Tt =0) =5+ 15exuz/20) [°C]. (37)

Better stability conditions should also be obtainable if the number of polynomials is el
larged. Indeed, if one chooskis= 18, instead oN = 12, the run with the initial temperature
profile (36) and the diffusivities (35) remains stable; all the more, the diffusivities (35) ca
even be slightly reduced and better adjusted to values closer to physical reality. Physic:
meaningful, nonconstant vertical distributions of the horizontal and vertical diffusivities ar

004, z>-20m

w =< 001, —-20m=>z>—-40m[m?sY],
002 z<-40m

vy = 1.0m?s 1 (constant,

0.0005 z>-20m (38)

D) =< 0.0001 —20m>z> —40m [m?s71],
0.0002 z< —-40m

D/, =10nm?s! (constant,

and for these, computations with 18 Chebyshev polynomials are stable.

5. CONVERGENCE PROPERTIES

So farthe convergence properties of the model were not discussed. Because of the spe
expansion in the vertical we expect these to be better than if finite differences or layers wo
have been used.

By decreasing the mesh size and increasing the number of Chebyshev polynomials
creasingly improved approximations of the velocity and temperature fields can be obtain
Our standard choick x M =65 x 17 corresponds in Lake Constance approximately to a



SEMI-IMPLICIT SEMISPECTRAL LAKE MODEL 225

mean grid length oAx >~ Ay ~ 1 km, not uniformly distributed over the lake. Uniformity
in grid size distribution is intended, because the numerical oscillations preferably occur
the small scales; however, it is difficult to achieve. In a rectangular basin this problem
irrelevant as no Schwarz—Chrystoffel transformation must be performed.

In principle, each attempt to estimate the discretization error is based on a compz
son of results obtained with different mesh sizes (leaving all other things equal). To te
this, computations of wind-induced motions in a rectangle ok6& kn? extent and 100
and 200 m constant depth, respectively, were performed for homogeneous water an
uniform wind of 4.7 ms? speed, constant in time. The horizontal mesh size was chose
to be 1 km, and computations were performed for different vertical resolutions, using
12, and 18 Chebyshev polynomials, respectively, and different vertical diffusion coeff
cients,vy =0.02 n? s~ andvy =0.005 n? s~%, keeping the horizontal diffusivity fixed at
vy = 1.0 n? s~1. Furthermore, variations of the horizontal mesh size showed this to hav
negligible effects on the solution except in the vicinity of shores and when tracer diff
sion is considered. We display the vertical profiles of the three velocity components at t
mid-lake position four days after the onset of the wind—corresponding nearly to stea
state conditions. In addition, we compare time series of the total kinetic energy stored
the water. Figure 2 shows the computed vertical distributions of the velocity componer
u (x-direction, with the wind)p (y-direction), andw (vertical direction, vanishingly small
in comparison to the- andv-components). Figure 3 shows the corresponding time serie
of the total kinetic energy. The water depth was 100 m. The curves do not differ muc
from one another; only very small differences in threand v-profiles and the time se-
ries of the total kinetic energy can be discerned between those computed with six and
polynomials. Increasing the mode number to even more polynomialse-g18), would
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FIG. 2. Vertical profile of the three velocity componentsv, andw in the midpoint of the homogeneous
rectangular basin of constant depth={100 m) for 4 days after constant west wind setup, with the vertical
diffusivities vy =0.02n?s™X. The broken curves were obtained with=6 Chebyshev polynomials, the solid
curves withN =12.
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FIG.3. Time series of the kinetic energy in the homogeneous rectangular basin of constanhaef®0(m)
subject to constant west wind with the vertical diffusivitiss= 0.02 n? s~1. The broken curves were obtained
with N =6 Chebyshev polynomials, the solid curves with=12.

notincrease the accuracy of the results beyond that in Figs. 2 and 3. On the other hand, w
vy =0.005 ns~! andh =100 m, computations with six polynomials are unstable; with
12 they are stable. However convergence is only reached with 18 Chebyshev polynom
as shown in Figs. 4 and 5. The substantially enhanced oscillatory nature of the circulati
(with the inertial frequency) for the smaller values of the vertical diffusivities can be seel
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FIG. 4. Vertical profile of the three velocity componentsv, andw in the midpoint of the homogeneous
rectangular basin of constant depth={100 m) for 4 days after constant west wind setup, with the vertical
diffusivities vy = 0.005 nt s~. The broken curves were obtained with= 12 Chebyshev polynomials, the solid
curves withN =18.
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FIG.5. Time series of the kinetic energy in the homogeneous rectangular basin of constanhdehtfo(m)
subject to constant west wind, with the vertical diffusivities= 0.005 n? s™*. The broken curve was obtained
with N =12 Chebyshev polynomials, the solid curve wih=18.

if the kinetic energies of Figs. 3 and 5 are compared. Apart from this, the kinetic energ
stored in the water fopy =0.005 n¥s ! is more than twice that fory = 0.02 nés 1.
Qualitatively this is obvious, but quantitatively, it is nevertheless surprising.

Figures 6 and 7 display the anologous results for a 200 m deep basir. 602 nf s,
results obtained with six polynomials are stable, but have not yet converged, while tho
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FIG. 6. Vertical profile of the three velocity componentsv, andw in the midpoint of the homogeneous
rectangular basin of constant depth=£200 m) for 4 days after constant west wind setup, with the vertical
diffusivities vy, = 0.02 n? sX. The broken curves were obtained with=6 Chebyshev polynomials, the solid
curves withN =12.
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FIG.7. Time series of the kinetic energy in the homogeneous rectangular basin of constanhae®0(m)
subject to constant west wind, with the vertical diffusivitigs= 0.02 n? s~*. The broken curve was obtained with
N = 6 Chebyshev polynomials, the solid curve with=12.

obtained with 12 polynomials have converged. Interestingly, (i) steady state is reached fa
for the more accurate resolution and (ii) the oscillatory component in the motion is mo
pronounced for the case with 200 m depth than 100 m depth (compare Figs. 3 and 7).

In summary: the deeper a lake is and/or the smaller the vertical austausch coefficie
of momentum are, the better must be the vertical resolution (i.e., the larger the number
considered Chebyshev polynomials) to obtain sufficiently accurate results. This behavic
is qualitatively the same as that deduced from stability considerations. Lake Constance
a maximum depth of 250 m and a mean depth of 100 m. This thus requires, to achie
reliable results, 12 polynomials wheg = 0.02 n?s~! and 18 or even more polynomials
whenvy = 0.005 n?s L.

6. EXAMPLES—TEST UNDER REALISTIC CONDITIONS

In this section we illustrate the model performance by demonstrating results obtain
for circulation scenarios in an assumed rectangular basin with constant depth and in L:
Constance for both homogeneous and stratified water, respectively.

6.1. Homogeneous Water
Homogeneous Rectangular Basin with Constant Depth

Consider a rectangular basin of 5.7 kn? extent and 100 m depth; assume homoge-
neous water, initially at rest, and subject to external wind-forcing. Let this wind blow ir
the long direction of the rectangle (from left, i.e., west), uniform in space, Heaviside i
time, and with strength.05N m~2 (~4.7 ms™! windspeed). This is the wind-forcing we
apply throughout the paper. Integration starts at rest until steady state is reached. Let
discretization be implemented withx = Ay =1 km. In computationsy =1 n?s™! is
kept constant, because it turned out that the numerical valugs afe not very crucial,
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FIG.8. Temporal evolution of the horizontal velocity componanftop) andv (bottom) for a midlake position
in the homogeneous rectangular lake of constant depth subject to a Heaviside wind setup in the long direct
The symbols (1, 2, 3. ., 11) refer to the depth (0, 10, 20,., 100) m. The graphs on the left are produced with
vw =0.02 n? s, those on the right fop, =0.005 n?s2.

while vy is, respectivelyyy = 0.02 n? s~1 (physically a large value) ang, = 0.005 n¥ s*
(physically a more realistic value). With the smaller valug= 0.005 n? s~2, stable com-
putations must be performed witth= 18 polynomials instead dfl = 12. That the values
of vertical diffusivities are significant can be seen, when the transient response from ii
tiation of the motion to steady state is analysed. We focus attention to time series of t
horizontal velocitiesy, v at 10 m depth intervals in the mid-lake position. Figure 8 (left)
displays these fory, =0.02 n?s~* (the larger value). Steady state conditions are approxi-
mately reached after less than 40 to 50 h, but initially an oscillating motion is superpos
on the monotonic trend into steady state, which is identified with the inertial wave of 16.3-
period for f =1.07 x 10~*s1. This oscillating signal is damped away after less than two
periods. The flow shows surface boundary layer structure, obviously reminiscent of tl
Ekman type with a thickness of approximately 40 m. By contrast in Fig. 8 (right), whicl
shows the corresponding results fqr=0.005 n? s, the inertial motions persist much
longer. Furthermore, it is evident that the Ekman layer is thinner and more pronounced
the surface velocities are larger in Fig. 8 (right) than in Fig. 8 (left), and the decay wit
depth is faster.

In Fig. 9, the time series of the total kinetic energy in the homogeneous rectanglar ba:
of constant depth subject to constant west wind are displayed as before with the verti
diffusivities as indicated. As has been seen in the time series of the horizontal velocity, t
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FIG. 9. Time series of the kinetic energy in the homogeneous rectangular basin of constant depth subjec
constant wind from W.

inertial motions of the transient energy persist much longer wjth= 0.005 n¥ s~* than

vy =0.02 n?s1, and this is even more distinct fo; = 0.001 n¥s 1 andN = 24. It can
also be seen that the total kinetic energy stored in the basin fer0.001 n? s~ is much
larger than forvy =0.005 n?s* or vy =0.02 n?s™1, which is due to the much larger
energy input from wind stress because of the much larger water velocity at the free surf
and the smaller dissipation for the smaller vertical diffusivity.

Table 6 summarizes the performance of the code whéswvaried,; it lists the approximate
number of oscillations seen in these inertial oscillations and gives rough estimates for
Ekman layer thickness and the asymptotic total kinetic energy. These results speak
themselves and point at the physical significance of the values of the vertical momentt
diffusivities in homogeneous waters of enclosed lakes.

Homogeneous Lake Constance

An analogous study was also performed for Lake Constance with the same numbel
grid points (65x 17) (see Fig. 1b) as for the rectangle. Computations were done also f

TABLE 6
For Three Values of the Vertical Austausch Coefficienty, and the Corresponding
Values of the Number of Chebyshev Polynomialll, This Table Lists the Approximate
Numbers of Inertical Oscillations, the Ekman Layer Thicknesses and the Values of
the Total Kinetic Energy as Seen in Figure Like Figs. 8 and 9

Number of Number of Ekman layer Total kinetic
vy Chebyshev oscillations thickness energy
[m2s] polynomials seen [m] x10° [kKNm]
0.02 12 1-2 40-50 6.5
0.005 18 4-5 20-30 16.0

0.001 24 7-8 10-20 35.0
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FIG. 10. Ekman spirals for a wind in the long direction of Lake Constance at the positions shown in thi
insets. The graphs show the horizontal velocities in two vertical profiles computed for large (left) and small (rigt
vertical diffusivities as indicated. The arrows are drawn for positiorm apart from one another from the free
surface to the bottom.

vy =1.0 P st andvy =0.02 s~ andwy = 0.005 n? s 1, respectively. In the second
case the larger number of polynomidds= 18 instead ofN = 12 was needed to achieve
stable numerical integration.

We display in Fig. 10 two steady Ekman spirals in the midlake positioribeflinger
See (left) and Obersee (right) as they form for an impulsively applied uniform wind fron
305 (NW) (approximately in the long direction) and as obtained with the two different
diffusivities. Those Ekman spirals are considerably affected byghelues. The turning
of the arrows making up the spirals also indicates that the surface Ekman boundary laye
thinner for the smaller values of the diffusivities (right panels) than for the larger ones (le
panels). All this is qualitatively as one would physically expect.

Equally interesting is the comparison of the time series of the horizontal velocity con
ponentsu andv for various depths in the midlake positionsiétherlinger See and Obersee
as displayed in Fig. 11, obtained with = 0.02 n? s~1. At both positions transient oscil-
lations can be discerned with the inertial period~df6.3 h; steady state is reached after
4 days. The oscillations can be seen at all water depths, however with decreasing amplit
as the depth increases. Furthermore, they die out before 2 dayitinger See, but only
after 4 days in the Obersee. Reason is the smaller sizbdeflinger See and therefore the
enhanced frictional resistance at the lake bottom and the side shores. Figure 11 also sh
that the boundary layer close to the free surface is thick in the transverse velocity compon
and thin in the along-shore velocity component.

The time series of the stored, total kinetic energy in Lake Constaneog f610.02 n? s—*
andvy =0.005 n? s~ (Fig. 12) show that the inertial oscillations persist longer, and the
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FIG. 11. Time series of the horizontal velocity componentdeft) andv (right) in the midlake positions of
Uberlinger See (up) and Obersee (down) at various depths for impulsively started constant wind fr¢NVBp5
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value of the total kinetic energy is much larger for the smallewalue, as shown before
for the rectangular basin.

6.2. Stratified Water

The role played by the vertical diffusivities is even more crucial for the prediction of
circulations in stratified water than it is for homogeneous water.

Stratified Rectangular Basin with Constant Depth
Computations were performed for the following diffusivities of momentum and heat:
e Case(i),

vy = 1L0mst, D = 1.0nPs?,
w = 002n?sl, Dy = 0.0005n?s?, (39)
o Case(ii).
004, z>-20m
vy =¢{ 0004 —-20m>z>—40m [m?s 1],
002 z<-40m
vy = 1.0mPs ! (constank,
(40)

0.0005 z>-20m

Dy ={ 000005 —20m>z> —40m [m2sY],
0.0001, z<-40m

D], =1.0m?s! (constant,

Case (i) assumes constant diffusivities with values unrealistically high; however, the
were needed for numerical stability when (only) 12 Chebyshev polynomials were use
Case (ii) is more realistic as it accounts for smaller diffusivities (viscosities) in the meta
imnion than in the epi- and hypolimnion. Compared with physically realistic values the
are still somewhat large. As before, computations were performed for impulsively applie
constant wind in the long direction from a state of rest during the first two days and an abrt
cessation afterwards; the lake is stratified by the initial vertical temperatj@fofile

17— 2exp—(z+ 20)/5), z>-20m

5+ 10exp(z+20)/20), z<-20m (41)

Tt=0 = {
which is shown as curve A in Fig. 13. At the lake bottom and free surface vanishing he
flow is assumed.

Figure 13 shows two snapshots each of the midlake temperature profile 4 days (cur
B) and 8 days (curve€), respectively, after the wind setup. The situation after 8 days
corresponds to near steady conditions. Results in the broken curves were obtained v
diffusivities (39), those in the solid curves with diffusivities (40). In the former the epilimnion
temperature is lowered after 4 days ByC2and again by 5°C during the subsequent 4
days. On the other hand, the hypolimnion temperatures rose by a few tenths of a degl
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FIG. 13. \Vertical distribution of the temperature in the midpoint of a rectangular basin, as given by formul.
(41) and initially (curves A) as well as 4 days (curves B) and 8 days (curves C) after a constant uniform wind wi
duration of two days had blown from the West, the solid curves as computed with the viscosities (40), the brok
curves as obtained with the viscosities (39).

Turbulent mixing paired with diffusion is responsible for this behavior. The difference t
the results displayed in solid curves shows how effective a reduction of the numerical valt
of the vertical diffusivities is. Now the maximum temperature drop in the epilimnion in &
days is no more than3°C, and the temperatures in the meta- and hypolimnion are hardl
affected. The reason is the selection of the very small diffusivities in the metalimnion whic
block the erosion of the thermocline at larger depths, as physically required.

As was the case for the processes in homogeneous lakes, the smaller vertical diffusivi
in (40) than in (39) let transient Kelvin- and Poinedl/pe waves be developed while they
are largely damped away before they are fully developed when the diffusivities (39) a
selected. Figure 14 compares time series of the vertical velocity comporadi30 m depth
at the four nearshore midpoints as obtained with the two sets of viscosities. Only from t
solid curve results we can clearly identify two conspicuous components of oscillation. Tt
longer periodic oscillation can be identified as an internal Kelvin-type wave the shorter ol
as a Poincar-type wave, (see [66]).

Computations were also performed using 30 Chebyshev polynomials and reducing
viscosities even further. Because of numerical stability, the vertical diffusivities listed in (4(
can only be reduced by approximately a factor of 0.6. Results are improved as compa
to Figs. 13 and 14, in particular, the Kelvin wave shows up more conspicuously and is le
quickly attenuated.

Stratified Lake Constance

It turned out that with the selection of diffusivities (40) and the initial temperature profile
(41) no stable computations for the stratified Lake Constance could be achieved, unl
more polynomials were used, which we eventually have not done. As already mentionec
the last section better conditions of numerical stability can be obtained if the region wi
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FIG. 14. Time series of the vertical velocity componentt the four indicated near-shore midpoints at 30 m
depth in the inhomogeneous rectangular basin of constant depth subject to constant wind from West lasting
days. Results in solid curves were obtained with the nonconstant diffusivities (40), those in broken curves w
the constant diffusivities (39).

large temperature gradients is better resolved; this means that the number of Chebys
polynomials is increased or the metalimnion is closer to the free surface. The choice of
polynomials, the selection of the diffusivities according to (38) and the initial temperatur
profile (36) (whose largest temperature gradient is at 10 m depth instead of 20 m as in (4
led to the stable computations.

Figure 15 shows time series of the vertical velocity component at the four indicate
near-shore positions at various depths; these are computed for impulsively applied cons
wind in the long direction (from 30BW) with duration of two days. One can identify two
components of oscillation; the longer periodic oscillation can be identified as an intern
Kelvin type, the shorter as a Poineatype wave.

It is known that for wind-forcing in the transverse direction the Poiedgpe waves are
more dominant. We also performed the computations under two-days transverse wind (fr
215°SW). In Fig. 16 the time series of the horizontal velocity componar(t®p) andv
(bottom) in the midlake positions diberlinger See (left) and Obersee (right) at various
depths are displayed. The Poinedype oscillations with the period @ h in Uberlinger
See (fromv-component) and with the period of approximately 12 h in Obersee can clear!
be identified, or which both were observed by Hollan [33].
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FIG. 15. Time series of the vertical velocity componemnat the four indicated near-shore positions at various
depths in the stratified Lake Constance subject to two days constant wind frorf\8@%. The labels (1, 2, 3, 4)
correspond to the depths (0, 20, 40, 60) m. Results were obtained with the diffusivities (38) and initial temperat
distribution (36).

7. CONCLUDING REMARKS

The barotropic and baroclinic circulation dynamics in inland lakes is driven by the me
teorological input. The variation of the thermal structure is primarily established by th
solar radiation and constitutes the long-term seasonal response for the lake. Once a ce
thermal structure is established, it generally is maintained for a longer time (i.e., days
weeks); the currents, as responses to the external winds, are formed as time-depen
flows at a given stratification, which, under most situations, are weak insofar as they
not destroy this stable ground state, but introduce relatively small perturbations in the te
perature field. During winter (i.e., from November to March at mid-latitude positions ir
the northern hemisphere) when the water is homogeneous, the temperature plays no
and barotropic currents are established. During summer a representative mean stratifice
can be assigned to a period of a few weeks. Under these conditions the barotropic curre
are complemented by the much stronger baroclinic motions in which the mass distributi
within the water body is of significance.

There are a large number of numerical models based on the shallow water equation
the Boussinesq approximation (e.g. [36, 46, 47, 50, 52, 53, 55, 57, 59-61, 63]). Haidvo
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FIG. 16. Time series of the horizontal velocity component@op) andv (bottom) in the midlake positions
of Uberlinger See (left) and Obersee (right) at various depths for impulsively started two days constant wind frc
215 (SW) in the transverse direction of the lake. The labels (1, 2, 3, 4) correspond to the water depths (0, 20,
60) m.

and Beckmann [8] summarized such model&@AST [18], Dom [17], GBM [19], GFDLM

[14], GHERM[5], HAMSOM [3], ISPRAMIX [20], M3D [62], Micom [10], Pom [11], QuoDDY
[44], ScruM [58], SEoMm [45]); all claim to describe these kind of wind induced motions
and have been applied to large scale oceanographic situations; some were employe
circulation flows in lakes and have had limited success (e.qg., [9, 34, 36, 50, 55, 61]). Howev
these three-dimensional models or codes are limited in their applicability, or unsatisfacto
because internal wave processes are overly damped owing to the large explicit or impli
numerical diffusion that had to be built into the codes to stabilize them under commc
conditions. In this paper a three-dimensional nonlinear semispectral primitive equatic
model (SPEM) was presented having a semi-implicit temporal integration routine. It we
applied to simple rectangular geometries as well as to Lake Constance with their wa
bodies being either homogeneous or stratified.

Because of the relatively small water depth, the smaller horizontal extent of lake basi
and whence the significance of the boundaries in contrast to the ocean the explicit tem
ral integration in SPEM had to be replaced by a more stable semi-implicit integratic
routine. This made larger time steps of the integration routines possible and allowe
with defendable computational expenditures, simulations over realistic stretches of tir
(say 1 month). A semi-implicit temporal integration was suggested, in which the vert
cal direction was treated implicitly. This semi-implicit integration routine was successfu
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because it permitted the larger extension of the time step when compared with the expl
method.

Via a large number of test runs the stability boundaries of the proposed numerical coc
were explored by varying the time steps, mesh sizes, and numerical values for the momen
and thermal diffusivities. In so doing it was shown that with fixed meshes and fixed numb
of spectral polynomials the time step must fulfill the Courant—Friedrichs—Levy conditior
but that in addition the diffusivities (of momentum and heat) must also be selected lar
enough if the errors based on the numerical approximation are to be attenuated in
course of the calculations. “Thumb rules” were proposed which give the practitioner
guideline how to select these in a physically meaningful way. Should the numerical values
the austausch coefficients needed according to these requirements be greater than phys
permitted, then physically important phenomena might be damped away to such an ext
thatthey are no longer recognizable or not as persistent as in nature. In such cases aninci
of the spatial resolution and a simultaneous reduction of the values of the diffusivities mig
help and yield better—and stable—results.

Further results pertinent to applications in physical limnology are given in [66, 67].

ACKNOWLEDGMENTS

While performing this work Y. Wang was financially supported by the Hanns—Seidel-Stiftung and the Deutsc
Forschungsgemeinschaft. K. Hutter acknowledges the support of the A. v. Humboldt Foundation and the M
Planck Society through the Max Planck Prize. A. Beckmann helped us in tracing significant literature. We tha
Professor Haidvogel for allowing us to use SPEM.

REFERENCES

1. J. AdamsMUDPACK: Multigrid software for linear elliptic partial differential equations, Version 3\a-
tional Center for Atmospheric Research, Boulder, CO, 1991. [Scientific Computing Division User Doc]

2. A. Arakawa and V. R. Larm, Computational design of the basic dynamical processes of the UCLA gene
circulation modelMethods Comput. Phy&7,173 (1977).

3. J. O. Backhaus and D. Hainbucher, A finite difference general circulation model for shelf seas and its apj
cation to low frequency variability on the North European ShelfTimee-Dimensional Models of Marine
and Estuarine Dynamic®dited by Nihoul and Jamart. Oceanography Series, Vol. 45 (Elsevier, Amsterdarn
1987), p. 221.

4. B. Barnier, P. Marchesiello, A. P. de Miranda, J.-M. Molines, and M. Coulibaly, A sigma-coordinate primitive
equation model for studying the circulation in the South Atlantic. Part I. Model configuration with error
estimatesDeep-Sea Resn press (1997).

5. J. M. Beckers, Application of a 3D model to the Western Mediterrankdviarine Systems, 315 (1991).

6. A. Beckmann and D. B. Haidvogel, Numerical simulation of flow around a tall, isolated seamount. Part
Problem formulation and model accuradyPhys. Oceanogg3,1736 (1993).

7. A.Beckmann and S. Diebels, Effects of the horizontal component of the Earth’s rotation on wave propagat
on an f-planeGeophys. Astrophys. Fluid Dy#6, 95 (1994).

8. A. Beckmann and D. B. Haidvogel, A Numerical simulation of flow at Fieberling Guydgeophys. Res.
102,5595 (1997).

9. J. R. Bennett, A three-dimensional model of Lake Ontario’s summer circulation, Part I: Comparison wil
Observations). Phys. Oceanogt, 591 (1977).

10. R. Bleck, C. Rooth, D. Hu, and L. Smith, Salinity-driven thermocline transients in a wind- and thermohaling
forced isopycnic coordinate model of the North AtlanficPhys. Oceanogg2, 1486 (1992).



11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

SEMI-IMPLICIT SEMISPECTRAL LAKE MODEL 239

. A. F. Blumberg and G. L. Mellor, A Description of a three-dimensional coastal ocean circulation model, i
Three-dimensional Coastal Ocean Models, edited by Mo@mastal and Estuarine Sciencésl (1987).

D. C. Chapman and D. B. Haidvogel, Formation of Taylor caps over a tall isolated seamount in a stratifi
oceanGeophys. Astrophys. Fluid Dy&4,31 (1992).

D. C. Chapman and D. B. Haidvogel, Generation of internal lee waves over a tall isolated se@aophys.
Astrophys. Fluid Dyn69, 31 (1993).

M. D. Cox,A Primitive Equation Three-Dimensional Model of the OceBath. Rep. 1, GFDL Ocean Group,
Princeton University, 1984.

G. T. Csanady, Water circulation and dispersal mechanisrakas: Chemistry, Geology, Physieslited by
A. Lerman (Springer-Verlag, New York/Heidelberg/Berlin, 1978).

G. T. Csanadyirculation in the Coastal OceafReidel, Dordrecht, 1984).

A. M. Davies, A three-dimensional numerical model of semi-diurnal tides on the European continental shelf,
Three-Dimensional Models of Marine and Estuarine Dynangdied by Nihoul and Jamart, Oceanography
Series, Vol. 45 (Elsevier, Amsterdam, 1987), p. 573.

D. E. Dietrich, M. G. Marietta, and P. J. Roache, An ocean modelling system with turbulent boundary laye
and topography: Model descriptioimt. J. Numer. Methods Fluids, 833 (1987).

J. W. Dippner, A frontal-resolving model for the German Bighintinental Shelf Re43(1), 49 (1993).

W. Eifler and W. Schrimpf, ISPRAMIX, a hydrodynamic program for computing regional sea circulatior
patterns and transfer process€smmission of the European CommunitiEt]R Report EUR 14856EN,
1992.

G. Z. Forristall, Three-dimensional structure of storm generated curde@epphys. Re39,2721 (1974).

I. Fukumori, J. Benveniste, C. Wunsch, and D. B. Haidvogel, Assimilation of sea surface topography into
ocean circulation model using a steady-state smoaihhys. Oceanoge3, 1831 (1993).

D. B. Haidvogel, J. L. Wilkin, and R. Young, A semi-spectral primitive equation ocean circulation mode
using vertical sigma and orthogonal curvilinear horizontal coordindt€omput. Phys$94,151 (1991).

D. B. Haidvogel, A. Beckmann, and K. S. Hedstr,"Dynamical simulations of filament formation and
evolution in the coastal transition zork Geophys. Re86,15017 (1991).

D. B. Haidvogel, A. Beckmann, D. C. Chapman, and R.-Q. Lin, Numerical simulation of flow around a tall
isolated seamount. Part Il. Resonant generation of trapped whsys. Oceanog®3,2373 (1993).

D. B. Haidvogel and A. Beckmann, Numerical models of the coastal oTear§eain press (1997).

P. F. Hamblin and E. Hollan, On the gravitational seiches of Lake Constance and their gen®chticeiz.

Z. Hydrol.40(1) (1978).

N. S. Heaps, Vertical structure of current in homogeneous and stratified wéydredynamics of Lakes
edited by K. Hutter (Springer-Verlag, Vienna/New York, 1984). [CISM-Lectures]

K. S. Hedswin, User's Manual for a Semi-Spectral Primitive Equation Ocean Circulation M¢lastitute

for Naval Oceanography, Stennis Space Center, MS, 1990).

A.J. Hermann and H.-M. Hsu, A vertical coordinate mapping technique for semi-spectral primitive equatic
models of ocean circulatiod, Atmos. Ocean. TechO, 381 (1993).

A. J. Hermann and W. B. Owens, Energetics of gravitational adjustment for mesoscale chimpPéys.
Oceanogr23,346 (1993).

E. E. Hofmann, K. S. Hedstni, J. R. Moisan, D. B. Haidvogel, and D. L. Mackas, Use of simulated drifter
tracks to investigate general transport patterns and residence times in the coastal transitibrGegys.
Res.96,15041 (1991).

E. Hollan, Stoinungsmessungen im Bodens8echster Ber. AWBR 112 (1974).

E. Hollan and T. J. Simons, Wind-induced changes of temperature and currents in Lake CoAsthniist.
Geophys, Bioklim., Ser. 27,333 (1978).

K. Hutter and J. schUber die hydromechanischen und thermodynamischen Grundlagen der Seezirkulatio
Mitteilung der Versuchasanstaliif Wasserbau, Hydrologie und Glaziologho. 20 (ETH, Zirich, 1975).

K. Hutter, G. Oman, and H. G. Ramming, Wind-bedingtei@triigen des homogeneniZhseesMitteilung
der Versuchsanstaltif Wasserbau, Hydrologie und Glaziologhtg. 61 (ETH, Zirich, 1982).



240 WANG AND HUTTER

37

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.
48.

49.
50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

. K. Hutter, Fundamental equations and approximatidpdrodynamics of Lakeedited by K. Hutter (Springer-
Verlag, Vienna/New York, 1984). [CISM-Lectures]

K. Hutter, Mathematische Vorhersage von barotropen und baroklinen Prozessendmufid Luganersee.
Vierteljahrschrift der Naturforschenden Gesellschaft iirizh. 129,51 (1984).

K. Hutter, Hydrodynamic Modelling of Lake$ransport Phenomena in the Environme®ulf Publishing
Company, Houston, 897 (1986).

K. Hutter, GroRskalige Wasserbewegung in Seen: Grundlage der physikalischen Limiimtogimik umwel-
trelevanter Systemedited by K. Hutter (Springer-Verlag, Berlin/Heidelberg/New York, 1991).

K. Hutter, Waves and Oscillations in the Ocean and in Lakestinuum Mechanics in Environmental Sciences
and Geophysicsdited by K. Hutter (Springer-Verlag, Berlin/Heidelberg/New York, 1993).

K. Hutter, G. Bauer, Y. Wang, and Putig, Forced response in enclosed lak&sTAM Symposium on
Physical Limnology, Broome, Australia, September 3-8, 1995.

Internationale Geasserschutzkomissioarfden Bodensednternationale Bodensee-Tiefenvermessuag-
desvermessungsamt Bademit¥émberg (1990).

J.T.C.lpand D. R. LyncfT;hree-Dimensional Shallow Water Hydrodynamics on Finite Elements: Nonlinear
Time-Stepping Prognostic Moddteport NML-94-1, Numerical Methods Laboratory, Dartmouth College,
Hanover, NH, USA 03755, 1994.

M. Iskandarani, D. B. Haidvogel, and J. P. Boyd, A staggered spectral element model with applications to-
oceanic shallow water equationsternational Journal of Numerical Methods in Flui@®, 393 (1995).

A. Lehmann, Ein dreidimensionales baroklines wirbetamgftides Modell der Ostseer. Inst. f. Meeresk.,
Kiel, No. 231, p. 104 (1992).

A.Lehmann, A three-dimensional baroclinic eddy resolving model of the Baltid8iss A47,1013 (1995).

M. Maiss, J. limberger, and K. O.iich, Vertical mixing inUberlingersee (Lake Constance) traced by A
SK and heatAquatic ScienceS6(4) (1994).

W. H. Munk, On the wind-driven ocean circulatidh Meteorology7, 79 (1950).

G. Oman, Das Verhalten des geschichteterichsees unteausseren WindlasteMitteilung der Versuch-
sanstalt &ir Wasserbau, Hydrologie und Glaziologo. 60 (ETH Zirich, 1982).

F. Peeterd;lorizontale Mischung in SeeDissertation (ETH, diich, 1994).

T. Pohlmann, A three dimensional circulation model of the South China S&harer-Dimensional Models

of Marine and Estuarine Dynamigcsdited by Nihoul and Jamart (1987), p. 245.

H.-G. Ramming and Z. Kowalikumerical Modelling of Marine Hydrodynamic®ceanography Series,
Vol. 26 (Elsevier, Amsterdam, 1980), p. 1.

P.-T. Shaw, A numerical simulation of the evolution and propagation of gulf stream warm-cord ririggs.
Oceanogr24,573 (1994).

T. J. SimonsCirculation Models of Lakes and Inland Sed&3anadian Bulletin of Fisheries and Aquatic
Sciences. Bulletin 203, Ottawa, 1980.

S. Serruya, E. Hollan, and B. Bitsch, Steady winter circulations in Lakes Constance and Kinneret driven
wind and main tributariegrch. Hydrobiol. Suppl70(1), 32 (1984).

L. D. Spraggs and R. L. Stre@hree-Dimensional Simulation of Thermally-Influenced Hydrodynamic Flows
Stanford University, Dept. of Civil Engineering, Technical Report 190, 1975.

Y. Song and D. B. Haidvogel, A semi-implicit ocean circulation model using a generalized topograph
following coordinateJ. Comput. Physl15,228 (1994).

J. Sihdermann, Die hydrodynamisch-numerische Berechnung der Vertikalstruktur von Beweguaggearg”
in Kandlen und BeckerMitt. Inst. Meereskunde Univ. Hambui® (1971).

K.-T. Tee, Simple models to simulate three-dimensional tidal and residual cuurents, in Three-dimensio
Coastal Ocean Models, edited by MoodEsastal and Estuarine Sciencésl25 (1987).

J. Tosch, Stomung in Seen—Dreidimensionale Simulation mit finiten Elemeriétieilung der Versuch-
sanstalt &ir Wasserbau, Hydrologie und Glaziologho. 63 (ETH Zirich, 1983).

S. J. WalkerA 3-Dimensional Non-Linear Variable Density Hydrodynamic Model with Curvilinear Coordi-
nates Tech. Rep. OMR-60/00, CSIRO Division of Oceanography (in preparation, 1995).



63

64.

65.

66.

67.

68.

69.

70.

71.

SEMI-IMPLICIT SEMISPECTRAL LAKE MODEL 241

. J. Wang, L. A. Mysak, and R. G. Ingram, A three-dimensional numerical simulation of Hudson Bay summ
ocean circulation: topographic gyres, separations and coastal.jtsys. OceangR4,2496 (1994).

Y. Wang,Windgetriebene Smungen in einem Rechteckbecken und im Bodeféedker Verlag, Aachen
(1996). Dissertation, Department of Mechanics, Technische Hochschule Darmstadt.

Y. Wang and K. Hutter, Three-dimensional wind-induced circulation in homogeneous lakes (in preparatic
1996).

Y. Wang and K. Hutter, Three-dimensional wind-induced baroclinic circulation in a rectangle. A numeric:
treatment by a spectral model (in preparation, 1996).

Y. Wang, K. Hutter, and E.&ierle, Three-dimensional wind-induced baroclinic circulation in Lake Constance
(in preparation, 1996).

Y. Wang and K. Hutter, ADI methods applied to a semi-spectral code of the shallow water equations (
preparation, 1997).

J. L. Wilkin and D. C. Chapman, Scattering of coastal-trapped waves by irregularities in coast-line al
topographyJ. Phys. Oceanogg0, 396 (1990).

J. L. Wilkin and K. S. Hedstrf, User's Manual for Orthogonal Curvilinear Grid-Generation Package.
CSIRO (Hobart, Tasmania, Australia, 1991).

J. L. Wilkin, J. Mansbridge, and K. S. Hedstr; An application of the capacitance matrix method to acco-

modate masked land areas and island circulations in a primitive equation oceanimodeNum. Meth. FI.
20,649 (1991).



